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1 Preamble

This was made long after having taken the course. It will likely not be exhaustive.

2 Probability models and axioms.

A sample space Ω is a list of possible outcomes that are mutually exclusive and collectively exhaustive. An
event A is a subset of Ω.

Define a probability law P : A → [0, 1] maps events to probabilities which follows the axioms of proba-
bility (e.g., countable additivity axiom).

More rigorously, a probability law defines a sigma algebra over Ω (i.e., (Ω, {A}) is a measurable space).

Countable Additivity Axiom If A1, A2, · · · is a countable sequence of disjoint events, then P(
⋃∞

i=1 Ai) =
∑∞

i=1 P(Ai).

Note: This only makes sense for countable events. For continuous sample spaces, any event A with
probability P(A) > 0 cannot be enumerated; it must be "inherently" continuous. This is another conse-
quence of the difference between "countable" and "uncountable" infinities.

3 Unit 2: Conditioning and independence

3.1 Conditioning and Bayes’ rule
Probability of B conditioned on A is the probability that the event B occurs, given that we know that A has
occurred. It is denoted P(B | A).

We can write the probability that both A and B occur in two ways:

P(A | B)P(B) = P(B | A)P(A) = P(A ∩ B)

Total Probability Theorem We can describe the probability of an event B by "conditioning out" the proba-
bility. We consider the probabilities that a different event A occurs, then the probability that B occurs given
that A occurred:

P(B) = ∑
i

P(B | Ai)P(Ai)

We can use the Total Probability Theorem to write Bayes’ rule, which allows us to update our prior beliefs
about the world, B, after viewing events or evidence, E:
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P(B | E) =
P(E | B)P(B)

P(E)

=
P(E | B)P(B)

∑i P(E | Bi)P(Bi)

3.2 Independence

Two events A and B are considered independent iff P(A ∩ B) = P(A)P(B). The idea is that even if you know
that B occurred, the probability of A occurring stays the same (P(A | B) = P(A)), and vice-versa.

Events can be conditionally independent, given C, meaning P(A ∩ B | C) = P(A | C)P(B | C).

There is a difference between mutual independence and (for example) pairwise independence.

(Mutual) independence. When events A1, A2, · · · , Am are (mutually) independent, then

P(Ai ∩ Aj ∩ · · · ∩ Am) = P(Ai)P(Aj) · · · P(Am)

for any distinct indices i, j, · · · , m. That is to say, all subsets of {A1, A2, · · · , Am} are independent.

Note! It may not be immediately obvious whether events are mutually/pairwise independent. It
doesn’t hurt to check using the above definition!

4 Unit 3: Counting

(Counting isn’t necessarily easy.)

Counting (or "combinatorics") can provide exact answers to probability questions, when the probability
problem can be described using a discrete uniform law, i.e., P(A) = # elements in A

# elements in Ω .

Fundamental counting principle. If there are n1 options for a first choice, n2 options for the second choice,
etc., and all combinations of options are possible and distinguishable from one another, then total number of combinations =
∏i ni.

When all options are not mutually distinguishable, one should be sure to account for over/undercounting.
A commonly appearing corrective factor is the multinomial coefficient. If there are n1 mutually indistinguish-
able balls, n2 mutually indistinguishable blocks, etc., and ∑i ni = N, then the number of distinguishable
outcomes is the multinomial coefficient ( N

n1,n2,···) =
N!

∏i ni !
.

Another potentially useful method, often useful when partitioning items into different "bins"/containers,
is the stars-and-bars approach.

5 Random variables.

A random variable (RV or r.v.) X associates events in Ω to real values x ∈ R. More explicitly, say F has
the sigma-algebra/sigma-field induced by a sample space Ω. X is a function X : F → R, X maps every
element/event ω of F to a real number, and "X = x" is shorthand for the event {ω : X(ω) = x}.

One descriptor for random variables is its cumulative distribution function (CDF), defined as FX(x) =
Pr[X ≤ x].
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For discrete random variables (the range of X is countable), the probability mass function (PMF), defined
as pX(x) = Pr[X = x], fully characterizes the random variable.

For continuous random variables, we define a probability density function (PDF) fX based on the CDF:
fX(x) = dFX

dx (x). The following intuition can be helpful: " fX(x)dx ≈ Pr[X ∈ (x, x + dx)]". (Remember:
for continuous random variables, Pr[X = x] = 0 for any value x; only continuous ranges have nonzero
probability).

One can define functions of random variables, which are themselves random variables. As an example, if
g(x) = x2, then if X is a random variable, g(X) = X2 is a function of a random variable.

The expectation of a random variable is denoted E[·]. For a discrete random variable X, it can be written
E[X] = ∑x∈X Pr[X = x]x = ∑x∈X pX(x)x. For continuous RVs, we have E[X] =

∫
x∈X fX(x)xdx.

Note that both ∑ and
∫

are linear operators, so expectations are as well, i.e., E[aX + b] = aE[X] + b.
The law of the unconscious statistician is incredibly useful for calculating expectations. It states for X and

Y = g(X), E[Y] = ∑y∈Y pY(y)y = ∑x∈X pX(x)g(x). This is not immediately implied; it works because of
a bijection one can make between values/probabilities in X and values/probabilities in Y = g(X), as well
as the linearity of expectations. (True to its name, the law is often invoked without anyone ever giving it
much thought.)

For example, we can write the expectations of functions of random variables g(X) as E[g(X)] = ∑x∈X pX(x)g(x).

The mean of a random variable X is simply E[X]. The variance of a random variable X is defined as
var(X) := E[(X− E[X])2]. This can be rewritten as var(X) = E[X2]− (E[X])2.

A random variable conditioned on an event A (assuming P(A) > 0) has a new probability distribution

pX|A(x) = Pr[X = x | A] and can be written pX|A(x) =

{
0, x /∈ A
pX(x)/P(A), x ∈ A

Similarly, we can write for a RV X conditioned on another RV Y that pX|Y(x | y) = pX,Y(x,y)
pY(y)

, pY(y) > 0.

The total expectation theorem is essentially another form of the law of total probability. Given mutually
exclusive and collectively exhaustive events {Ai}, we have: E[X] = ∑i P(Ai)E[X | Ai].

A joint probability distribution over random variable sets {X, Y, Z} is written Pr[X = x, Y = y, Z =
z] = pX,Y,Z(x, y, z). They are independent if pX,Y,Z(x, y, z) = pX(x)pY(y)pZ(z). If they are independent,
E[g(X)h(Y)] = E[g(X)]E[h(Y)] and var(X + Y) = var(X) + var(Y).

One can create marginalized probability distributions to get the dependence on just a subset of RVs. We
do this by integrating over the RVs to be marginalized. In a sense, we’re using the law of total probability:
Pr[X = x] = ∑i Pr[X = x | Y = yi]Pr[Y = yi] = ∑i Pr[X = x, Y = yi].

We can "mix" PDFs and PMFs in Bayes’ rule: use f for continuous r.v.’s and p for discrete r.v.’s.

6 Indicator Variables and problem solving techniques.

A very powerful method to solve many problems is to use indicator variables to represent events, or vice-

versa. An indicator variable for an event A is a random variable XA such that XA =

{
1, A happens
0, A doesn’t happen

.

Note that E[XA] = P(A). Also, we can describe the complement of A as 1− XA.
Note also that we can describe Pr(A ∩ B) = E[XAXB]. Using De Morgan’s laws, we can show that
A ∪ B = (AC ∩ BC)C and so P(A ∪ B) = E[1− (1− XA)(1− XB)]. And so on.
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Conditioning a sequence of indicator variables on each other is another useful skill. For example,
what is the expected number of dice rolls until all sides of a fair k-sided die is seen? We can write X =

X1 + X2 + · · ·+ Xk, where Xi ∼ Geom( k−i+1
k ) and compute its expectation that way.

When there is more than one source of randomness (e.g. a randomly selected number of (random) dice
rolls), the law of iterated expectations (mentioned before) is often useful. EX [X] = EY[EX [X | Y]]. For the
variance, a slightly more complicated formula (the law of total variance) is needed: Var(X) = Var(EX [X |
Y]) + E[Var(X | Y)].

We can describe the variance of a sum of r.v.’s as follows:

Var(X1 + X2 + · · ·+ Xn) = ∑
i

Var(Xi) + ∑
i 6=j

Cov(Xi, Xj)

Here, the covariance between two r.v.’s is described as:

Cov(X, Y) := E[(X− E[X])(Y− E[Y])] = E[XY]− E[X]E[Y]

The correlation between two r.v’s is a scaled version of the covariance:

ρ(X, Y) =
Cov(X, Y)√

Var(X)
√

Var(Y)

(The standard deviation of X is denoted σX :=
√

Var(X).)

When r.v.’s are independent, they are uncorrelated (converse not necessarily true), which implies Cov(X, Y) =
0.

6.1 Derived distributions.

The PDF/CDF of Y = g(X) can be described by the PDF/CDF of X by considering:

FY(y) = Pr[Y ≤ y]
= Pr[g(X) ≤ y]

= Pr[X ≤ g−1(y)]

= FX(g−1(y))

For monotonic random variables where Y = g(X), we can simplify the calculation to:

fX(x)dx = fY(y)dy

fX(x) = fY(y)
dy
dx

= fY(g(x))
dg(x)

dx
(y = g(x))

(Fun Fact: The justification and form is quite reminiscent to those for the Legendre transformation.)

For two independent r.v’s X and Y, we can describe the probability distribution of Z = X + Y via a
convolution: pZ(z) = ∑x∈X pX(x)pY(z− x). (Use integration instead of summation for continuous r.v.’s.)

An important consequence of the nature of convolutions: the sum of independent Normal distributions
is also Normal.
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7 Bayesian Inference

Bayesian inference treats an unknown Θ as a random variable (and not as a fixed parameter of unknown
value). This means Θ has an associated prior distribution pΘ. We observe values of X (so X = x), and we
update our prior beliefs (via Bayes’ rule) to get pΘ|X(· | X = x). Bayes’ rule would be:

pΘ|X(θ | x) =
pX|Θ(x | θ)pΘ(θ)

pX(x)

=
pX|Θ(x | θ)pΘ(θ)

∑j pX|Θ(x | θj)pΘ(θj)

The full output is a posterior pΘ|X , but often we want point estimates. This could be:

• the maximum a posteriori probability (MAP) estimate (maxθ pΘ|X(θ | x), or

• the conditional expectation EΘ[Θ | X = x]; this minimizes conditional mean squared error (MSE), i.e.,
provides the least-mean-squares (LMS) solution. Mathematically, Θ̂∗ = argminΘ̂ E[(Θ̂− Θ)2 | X =
x] = EΘ[Θ | X = x].

• the expectationEΘ[Θ] = EX [EΘ[Θ | X]], which minimizes the overall MSE θ̂∗ = argminθ̂ E[(Θ− θ̂)2].
(This would probably be best used if you have a strong understanding of X’s distribution and aren’t
too concerned with the particular realizations you observed.)

7.1 Linear models with Normal Noise
Say that at time t = 1, 2, · · · we observe Xt, which we model as coming from signals atjΘj (a’s known) and
noise Wt, all independent and added linearly, i.e.,

Xt = ∑
j

atjΘj + Wt

Further suppose all the Wt ∼ N(0, σ2
t ), Θj ∼ N(x0, σ2

0 ) are independent and Normally distributed. Then
we end up with a likelihood function L(θj | xt) = c(x) exp(−quadratic(θ)). If you’d like point estimates,
you can perform the following steps:

• MAP: Find peak of L(θ | x). Find and compare values of solutions for dL
dθ (θ) = 0.

• LMS: Find EΘ[Θ | X = x], i.e., calculate the mean of the posterior distribution.

For the above problem, you’ll find that the answer is

θ̂MAP = θ̂LMS = E[Θ | X = x] =
∑n

t=0
xt
σ2

t

∑n
t=0

1
σ2

t

where "x0, σ2
0 " refer to the mean and variance of the prior distribution of Θ. (Intuitively, "our prior

distribution acts as if it were ’the first observation’".)

7.2 Least-Mean-Squares and Linear LMS

We can rewrite the mean-squared-error E[(Θ− θ̂)2] as Var(Θ− θ̂) + (E[Θ− θ̂])2 = Var(Θ) + Bias(Θ, θ̂)2.
Even if you have a model with no bias, on expectation you will have MSE of var(Θ).

If we’re minimizing conditional MSE E[(Θ− Θ̂)2 | X], the best estimator is Θ̂ = E[Θ | X]. Calling the
error ε = Θ̂−Θ, we have E[ε | X = x] = 0, Cov(ε, Θ̂) = 0, var(Θ) = var(Θ̂) + var(ε).
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If we limit ourselves to estimators Θ̂ = aX + b (for parameters we calculate based on the data, a and b),
we get

a =
Cov(Θ, X)

var(X)
= ρ

σΘ

σX
, b = E[Θ]− aE[X]

We can show that E[(Θ̂L −Θ)2] = (1− ρ2)var(Θ).

7.3 Improper, Uninformative, and Conjugate Priors
(From "Fundamentals of Statistics" course.)

Note that your prior distribution needn’t be integrable as long as the posterior distribution is integrable.
Such priors are called improper priors.

7.3.1 Jeffreys prior: a "covariant" prior.

Keep in mind that a change of variables from p to q implies changing fP to fQ such that the following holds:

fP(p)dp = fQ(q)dq

Let’s say you’d like to use the machinery of Bayesian inference and have a model M with unknown
parameters (as RVs) Θ, but have no reason to believe one value of Θ is more likely than the other. What we
mean to say is that the prior should have no effect on the posterior distribution, that only the observations
should affect the shape, that the prior doesn’t give some parameters an "unfair advantage" in the posterior.

This is trickier to pin down than you might expect. One way of making this more concrete is the follow-
ing: We want a prior JPΘ(θ) so that we can take the following two routes:

1. From (JPΘ, LX|Θ), calculate posterior under θ, πΘ|X , then change variables to π
(1)
Φ|X .

2. From (JPΘ, LX|Θ), change variables to (JPΦ, LX|Φ) then calculate posterior under φ, π
(2)
Φ|X .

And in both cases, the posteriors are equal, i.e. π
(1)
Φ|X = π

(2)
Φ|X . This suggests that it doesn’t matter what

functional form of the parameter we’re studying – "equivalent" (bijective) values have equivalent probabil-
ities before and after observing the data, i.e. πΘ(θ)dθ = πΦ(φ)dφ and also πΘ|X(θ | x)dθ = πΦ|X(φ | x)dφ

for any bijective function g : θ → φ where φ = g(θ).
The appropriate prior distribution may not be immediately obvious. It turns out one should use a form

of the Fisher information In=1(θ), specifically

JPΘ(θ) =
√

det(I1(θ))

to achieve this property. J(θ) is called the Jeffreys prior. What’s perhaps most important about this choice
of prior is that the reparameterization also works on the posterior distribution π(· | X) = π(·)L(X | ·), i.e.,

π(θ | X)dθ = π(φ | X)dφ

The Fisher information can be written as

In=1(θ) = VarX (∇θ (ln(Ln=1(θ; X)))) = −EX [Hθ (ln(Ln=1(θ; X)))]

(H is the Hessian, or "second-derivative matrix".)
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7.3.2 Conjugate priors

Some priors "play nicely" with certain sorts of data. By this we mean the prior and posterior distributions
remain in the same family, which can help keep things computationally tractable. As one example, if we
are interested in Xi ∼ Ber(p), if we chose the Beta distribution Beta(a, b) as our prior for p, the posterior
distribution for p given the data would end up being Beta(a + ∑i Xi, b + (n− ∑i Xi)), which is still a Beta
distribution. This is considered a conjugate prior for the parameter in question. Different models for Xi
suggest different conjugate priors.

8 Classical Statistics

8.1 Inequalities

Markov inequality For any X ≥ 0 and a > 0, Pr[X ≥ a] ≤ E[X]
a .

Proof: Set Y = a(i f X ≥ a); 0o/w. E[Y] = aPr[X ≥ a] ≤ E[X].

Chebyshev inequality Assume X has finite mean µ and variance σ2. Then Pr[|X− µ| ≥ c] ≤ σ2

c2 .

Proof: Consequence of Markov inequality: Pr[(X− µ)2 ≥ c2] ≤ E[(X−µ)2]
c2 .

Hoeffding’s inequality Let Xi be bounded and (mutually) independent. Then the tail bound is exponential.
In a particular case, for Xi = 1,−1 with equal probability, Pr[X̄n ≥ a] ≤ e−na2/2.

Proof:

Pr[∑
i

Xi ≥ a] = Pr[et ∑i Xi ≥ eta] ≤ E[et ∑i Xi

eta

for all t > 0. Minimize w.r.t t.

(Note: This applies even for small n. It is more conservative than the Central Limit Theorem, but the
r.v.’s must be bounded as well as independent.)

Weak Law of Large Numbers For all ε > 0, Pr[|X̄n − µ| ≥ ε]→(p)
n→∞ 0.

Proof: Apply Chebyshev inequality to X̄n. (Less stringent conditions can also be used, but more work
involved.)

8.2 Central Limit Theorem

Consider iid random samples Xi with mean µ and variance σ2. We have:

X̄n − µ

σ/
√

n
→(d)

n→∞ N(0, 1)

In terms of sums (and a "moving" convergence), we can write

∑
i

Xi →
(d)
n→∞ N(nµ, nσ2)

In practice, the distribution is often roughly Normal at or above n ≈ 30 (symmetry and unimodality
among the r.v.’s probability distribution helps).
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When applying the CLT to discrete r.v’s, it may help to use the "half-correction". Let Sn = ∑i Xi.
Since Pr[Sn ≤ k] = Pr[Sn ≤ (k + 1)], you can use the Normal approximations corresponding to Pr[Zn ≤
(k + 1/2)] and often get more accurate approximations.

(We defer further discussion of CLT and classical statistics to the "Fundamentals of Statistics" review
notes.)

9 Bernoulli and Poisson Processes

Both are examples of stochastic processes. These can be viewed in a number of ways:

1. a sequence of r.v.’s indexed by "time": X1, X2, · · ·

2. a probability distribution over a sample space (a set of infinitely long sequences)

A useful way to determine the distributions of some r.v.’s of interest can be to determine the CDF first and
then calculate the PDF/determine the PMF from it.

9.1 Bernoulli process
A Bernoulli process with parameter p (Bernoulli(p)) can be characterized by the following: for any i, Xi ∼
Ber(p) and Xi+1 are independent of i, X1, · · · , Xi. This suggests

• the fresh start property. If you begin observing the process at time T, you will know the same amount
about future events as someone who started observing at time 0.

• The interarrival time between successes follows a Geom(1− p).

Time until the k’th success can be calculated as:

Pr[k− 1 arrivals in time t− 1]× Pr[arrival at time t] =
(

t− 1
k− 1

)
pk−1(1− p)t−k × p

The above can be called a Pascal distribution.

Splitting a Bernoulli process into two streams using a biased coin Ber(q) will split Bernoulli(p) into
Bernoulli(pq) and Bernoulli(p(1− q)). These split streams are not independent of each other, since in this
discrete setting, if Stream 1 has an arrival, Stream 2 cannot.

9.2 Poisson Process
We discuss a Poisson process with arrival rate λ (PoisProc(λ)) based on the following assumptions:

• number of arrivals in disjoint time intervals are independent.

• Let P(k, τ) be the probability of k arrivals in interval of duration τ. For very small δ,

P(k, δ) ≈


1− λδ, k = 0
λδ, k = 1
0, k > 1

The idea is that second-order values of order O(δ2) are so small as to be negligible.
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As a consequence of the above, the Poisson Process also has the "fresh-start" property.
These assumptions also mean that p(k, τ) has the PMF of Pois(λτ).

To determine time of k’th arrival, we can say:

fk(t)δ ≈ Pr[k’th arrival at time t]
≈ Pr[(k− 1) arrivals in the interval just before time t]× Pr[arrival in time (t, t + δ)]

≈ (λt)k−1

(k− 1)!
e−λt × λδ

fk(t) above described the PDF for an Erlang distribution of order k. Note that Erlang(λ, k = 1) = Exp(λ).

If you merge PoisProc(λ1) and PoisProc(λ2), you simply have a PoisProc(λ1 + λ2).

Splitting a Poisson Process creates two new Poisson processes. Interestingly (due to the curiosities of
making time intervals infinitesimally small), these two new processes are independent.

10 Markov chains

Markov chains are another stochastic process. A fundamental assumption is the Markov property:

Pr[Xn+1 = j | X1, X2, · · · , Xn] = Pr[Xn+1 − j | Xn]

That is to say, all relevant information about the history is contained in the current state.

One can distinguish between transient states and recurrent states. A state i is recurrent if "starting from i,
whatever path you take, there will be a path that lets you return to i". States that don’t satisfy this property
are transient. One can have "islands/groups" of states where the groups are isolated from one another, but
each state is well-connected within the group; these are called "recurrent classes" of the Markov chain.

It can also be useful to note whether the states in a recurrent class are periodic (of order d > 1). This
implies that one can separate/color the states so that every time, the state moves from one color to the next
in the sequence.

10.1 Matrix description and long-term behavior.
We can describe discrete-time, finite-state Markov chains as a transition probability matrix M, where Mi,j de-
scribes the probability of going from State i to State j. (Each row of M must sum to 1.)

A key recursion for Markov chains is that

ri,j(n) = ∑
k

ri,k(n− 1)pk,j

.
We can use this to determine long-term behavior. We assume that there’s a "long-run frequency of

visiting State j" πj, that is, ri,j(n)→n→∞ πj. We can then solve the balance equations

πj = ∑
k

πk pk,j

The interpretation of πj as the long-term visitation frequency is very useful for answer such questions
as "How often does one visit State j from State i?" (Would be πi pi,j.)
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For questions like "expected time to absorption by an absorbing state j, starting from state i", "expected
time to pass state j, starting from state i", and "expected recurrence time for state i": you can expect to create
recurrence relations based on the transition probabilities and the analogous quantities for all state k 6= i,
then solving them.
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